Recrystallization

- Purification
- Grow crystals suitable for XRD
 - Well formed
 - Single
 - Large enough (0.2 - 0.5mm in 2 of 3 dimensions)
Experimental considerations

- Solvent choice
- Nucleation sites
- Mechanics
- Time
Solvent choice

• Do
 ▫ aim for moderate solubility
 ▫ remember “like dissolves like”

• Don’t
 ▫ use “floppy” solvents, e.g. long alkyl chains
 ▫ use highly volatile solvents

• Typical solvents include
 ▫ acetonitrile, MeOH, EtOH, iPrOH, ether, MeCl₂, ethyl acetate, toluene, and THF to name a few.
Nucleation sites

- Crystallization begins at defect sites
 - scratches in glassware
 - dust or lint
- A few sites are necessary
- Too many will result in small crystals
Mechanics

- Crystal growth takes a steady hand!
 - re-dissolve the sample
 - knock off crystallites
- Avoid areas prone to mechanical vibration
- Don’t constantly “check in” on your samples
Time

- Crystal growth takes time
 - reduces lattice defects and twins
 - results in larger crystals
- Best results appear within 2 days to 2 weeks
- Sometimes these “rules” are broken
Crystallization Techniques

- Many methods, easiest involve solvents
- Prepare to use a lot of material
- Develop a solubility profile
Slow Evaporation

- Dissolve sample to near saturation
 - use solvents in which sample is only moderately soluble
- Loosely cover vial
 - 1 dram vials with holes poked in a plastic cap
- Wait
 - depends on vapor pressure of solvent
 - 2 days to 2 weeks.
Slow Cooling

• Dissolve sample in hot solvent
 ▫ good for material that is insoluble at room temperature
• Cap off and allow to cool slowly
 ▫ moderate temperature with oven, heating pad, cotton wool, water bath, or a warm spot in the lab
Layering/Solvent Diffusion

- Use two solvents, S1 and S2
 - material is soluble in S1 but not S2
 - S2 is less dense than S1
- Dissolve in S1 in vial, slowly add S2 to form a layer on top
- Crystals grow at the S1-S2 interface as solvents diffuse slowly.
- MeCl$_2$/Et$_2$O popular combination
Vapor Diffusion

- similar to solvent diffusion, but uses separate vials for S1 and S2
 - dissolve material in S1, in open small vial
 - place small vial in larger vial with S2 and cap off
- must choose solvents carefully
Other Techniques

• Sublimation
 ▫ Sample loaded into tube under vacuum.
 ▫ Thermal gradient applied

• Hydrothermal / Solvothermal
 ▫ Materials dissolved in solvent, sealed in container
 ▫ Subjected to moderate heat for a period of time

• “Protein” methods
 ▫ Hanging drop
 ▫ Use of precipitant
How to coax the crystals out

• Try many different solvents
 ▫ run recrystallizations in parallel
 ▫ build a solubility profile
• Combine methods
 ▫ combinations or trios of solvents
 ▫ slow cooling + evaporation
• Alter environmental conditions
 ▫ leave in the fridge or on a windowsill
 ▫ use a different vial
 ▫ set up a thermal gradient
• Functionalize